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Abstract 15 

Occupancy surveys should be designed to minimise false absences. This is commonly 16 

achieved by increasing replication or increasing the efficiency of surveys. In the case of 17 

destructive sampling designs, in which searches of individual microhabitats represent the 18 

repeat surveys, minimising false absences leads to an inherent trade-off. Surveyors can 19 

sample more low quality microhabitats, bearing the resultant financial costs and producing 20 

wider-spread impacts, or they can target high quality microhabitats were the focal species is 21 

more likely to be found and risk more severe impacts on local habitat quality. We show how 22 

this trade-off can be solved with a decision-theoretic approach, using the Millewa Skink 23 

Hemiergis millewae from southern Australia as a case study. Hemiergis millewae is an 24 

endangered reptile that is best detected using destructive sampling of grass hummocks. 25 

Within sites that were known to be occupied by H. millewae, logistic regression modelling 26 

revealed that lizards were more frequently detected in large hummocks. If this model is an 27 

accurate representation of the detection process, searching large hummocks is more efficient 28 

and requires less replication, but this strategy also entails destruction of the best microhabitats 29 

for the species. We developed an optimisation tool to calculate the minimum combination of 30 

the number and size of hummocks to search to achieve a given cumulative probability of 31 

detecting the species at a site, incorporating weights to reflect the sensitivity of the results to 32 

a surveyor’s priorities. The optimisation showed that placing high weight on minimising 33 

volume necessitates impractical replication, whereas placing high weight on minimising 34 

replication requires searching very large hummocks which are less common and may be vital 35 

for H. millewae. While destructive sampling methods are sometimes necessary, surveyors 36 

must be conscious of the ecological impacts of these methods. This study provides a simple 37 

tool for identifying sampling strategies that minimise those impacts. 38 

 39 
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Introduction 40 

Occupancy surveys are fundamental to mapping and monitoring species distributions [1], as 41 

well as habitat modelling [2], systematic conservation planning [3] and environmental impact 42 

assessments [4,5]. In their simplest application, occupancy surveys provide strict assessments 43 

of the presence or absence of a species at a given locality; the species is present if it is 44 

detected and absent if it is not. However, this intuitive result is confounded by the fact that 45 

species may go undetected during a survey, producing a “false absence” [6,7,8]. False 46 

absences can lead to biased estimates of the probability of occupancy [9,10], and may 47 

undermine the application of survey results. 48 

 49 

The reliability of occupancy surveys therefore depends on achieving a sufficiently high 50 

probability of detecting the target species if it is present [6,7]. Estimates of the probability of 51 

detection during a single survey can be derived using occupancy models, which jointly 52 

estimate the probability of site occupancy [5,11,12]. In turn, one can estimate the number of 53 

surveys needed to increase the cumulative probability of detection at each site to some 54 

desired threshold [13,14]. However, the number of surveys also influences the overall size 55 

and cost of a survey program. Hence, in addition to the primary objective of attaining a 56 

desired cumulative probability of detection, surveyors will also strive to minimise replication. 57 

Several examples exist of how to approach this problem from an economic perspective 58 

[5,13,15]. However, certain survey types also have important ecological costs which need to 59 

be considered in survey design. Destructive sampling of favoured microhabitats is an 60 

example. 61 

 62 

Destructive sampling techniques are employed to detect cryptic animals that cannot be 63 

readily observed or trapped. Occupancy surveys that use destructive sampling entail 64 
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searching and destroying favoured microhabitats of the focal species within a given site; in 65 

which case searches of multiple microhabitats may be considered equivalent to repeated 66 

surveys at each site [16, p. 162]. Examples of destructive sampling include raking beds of 67 

leaf litter when searching for fossorial lizards [17], prizing open or lifting (and therein 68 

destroying) decaying woody cover when sampling salamanders [18,19], removing exfoliating 69 

bark from trees when searching for arboreal arthropods [20] and drag-netting beds of aquatic 70 

vegetation for fish or amphibian larvae [18,21]. If microhabitats do not vary in quality for the 71 

target species, then the probability of detection at each microhabitat will not vary, and 72 

minimising the impacts of destructive sampling is equivalent to minimising the number of 73 

microhabitats searched. However, microhabitats usually vary in quality, in which case the 74 

focal species is more likely to utilise (and be detected in) some microhabitats than others. In 75 

turn, this produces a trade-off in destructive sampling designs, between minimising the loss 76 

of high quality microhabitats and minimising replication. To minimise replication, the most 77 

effective approach is to sample the highest quality microhabitats, because this confers a 78 

higher probability of detection per sampling unit. However, this would also lead to the 79 

destruction of the highest quality microhabitats for the target species. Conversely, one could 80 

limit sampling to lower quality microhabitats, but the resulting increase in replication may 81 

come at considerable financial cost and produce wider-spread impacts on the focal species. 82 

 83 

This combination of objectives - attaining a threshold cumulative probability of detection 84 

whilst balancing sampling replication and impacts on high quality microhabitats - leads to an 85 

optimisation problem that we believe has not previously been solved. Here we show that 86 

when a model of the sampling process for a given species is available, it is possible to use a 87 

simple decision-theoretic approach to solve this trade-off in destructive sampling designs. We 88 
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demonstrate this approach using the design of surveys for the Millewa Skink Hemiergis 89 

millewae Coventry, a locally endangered lizard from southern Australia [22].  90 

 91 

Methods 92 

Case study and field surveys 93 

In the state of Victoria, Hemiergis millewae is recognized as critically endangered, occurring 94 

only in the semi-arid Mallee vegetation of the far north-west [23]. Hemiergis millewae 95 

inhabits hummocks of Triodia scariosa (‘Spinifex’), and the most effective means of 96 

surveying for this species is to rake and dismantle individual Triodia hummocks [24]. While 97 

this ensures that individual lizards are found if they occupy a hummock, it entails destruction 98 

of the hummock and possibly a reduction in the habitat suitability of the site for the species. 99 

Hence, while further surveys are required to ascertain the conservation requirements of H. 100 

millewae in Victoria [23,24], it is important to minimise the impacts of these surveys on the 101 

species.  102 

 103 

Two of us (PR and IS) conducted surveys for H. millewae at 52 sites across the Murray-104 

Sunset National Park in north-western Victoria in the Austral autumn of 2011 to improve 105 

knowledge of the distribution of this species [24]. Sites were rectangular quadrats measuring 106 

50 m by 20 m, each including multiple Triodia hummocks. A variable number of these 107 

hummocks were searched at each site, dependent on hummock density and when and if 108 

H. millewae was found (surveys were terminated as soon as an individual was detected). Each 109 

hummock was methodically dismantled and searched for individual lizards. Sand and litter 110 

beneath the hummock were also gently raked for lizards sheltering therein. The dimensions of 111 

each Triodia hummock were measured, and hummock volume (m3) estimated by assuming a 112 
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standard rectangular shape. The growth phase of each hummock was also recorded as: 1 = 113 

seedling, 2 = immature clump, 3 = mature clump, 4 = mature clump with central tillers 114 

beginning to collapse, 5 = central tillers collapsed forming a broken or unbroken ring. 115 

Distance to the nearest hummock and the leaf litter cover around each hummock were also 116 

measured. All survey work undertaken during this study was carried out in accordance with 117 

the requirements of animal ethics and research permits (ethics approval n. 22-08, issued by 118 

the Wildlife and Small Institutions Animal Ethics Committee of the Department of Primary 119 

Industries; research permit n. 10004684, issued by Department of Sustainability and 120 

Environment in accord with Wildlife Act 1975 and National Parks Act 1975). 121 

 122 

Statistical analysis 123 

Initially, we sought to model the probabilities of site occupancy and detection of H. millewae 124 

through the use of a standard occupancy model [11], using individual hummocks within a site 125 

as replicate surveys, and seeking relationships between hummock characteristics and the 126 

probability of detection on a per hummock basis. However, the data were insufficient to 127 

separate the probability of site occupancy and detection, and hence, to gain estimates of the 128 

effects of individual hummock properties on the probability of detection.  Therefore, we 129 

assessed the influence of hummock attributes on the detection of H. millewae using data from 130 

the subset of sites at which this species was observed at least once (19 sites and 85 131 

hummocks), in which case occupancy of these sites by the species was certain (following 132 

[7,25]). Candidate logistic regression models were fitted to the hummock-level detection data 133 

from known occupied sites as follows: 134 

logit( ) ,
~ ( )

i i

i i

p X
Y Bernoulli p

α β= +
         Eqn 1 135 
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where Yi is the detection or non-detection of H. millewae in hummock i, represented as a 136 

Bernoulli variable with probability pi, which is a logistic function of hummock attribute Xi. 137 

Due to sample size limitations, additive combinations of hummock attributes were not 138 

assessed. We also fitted a “null” model with constant p. This led to a candidate set of five 139 

single-variable models (null, hummock volume, hummock growth phase, distance to nearest 140 

hummock and surrounding leaf litter). Treating detections in different hummocks as 141 

independent was justified by the fact that detections were not spatially correlated (Moran I 142 

statistic standard deviate = -0.397, p-value = 0.654). 143 

 144 

The relative fit of these models to the data was assessed using the deviance information 145 

criterion [DIC: 26]. DIC balances the unexplained variance in the model and the number of 146 

parameters. The model with the lowest DIC value (DICmin) is considered the most 147 

parsimonious, and models with ∆DIC < 2 (∆DIC = DIC – DICmin) are considered largely 148 

indistinguishable. Model fitting was completed using JAGS [27], with uninformative priors 149 

for all parameters (code and data provided in supporting information S1 and S2). For each 150 

model we ran 100,000 iterations on three Markov chains, after discarding the first 50,000 151 

iterations as a burn-in. The model with the greatest support was used to estimate the 152 

cumulative probability of detection (P) at a site after surveying n hummocks, as [7]: 153 

1

1 (1 )
n

i
i

P p
=

= − −∏          Eqn 2 154 

where pi is the probability of detection at hummock i as given by Eqn 1.  155 

 156 

Equation 2 shows that P increases with n; however, when pi depends on the characteristics of 157 

the hummocks searched, as per Eqn 1, it is also possible to increase P by selectively 158 

searching particularly suitable hummocks. As above, the decision about which parameter to 159 

manipulate depends on the relative importance given to the number or the quality of the 160 
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hummocks searched. We explored how the optimal survey program varied depending on this 161 

importance. A weighting (wn) of between 0 and 1 was assigned to the alternative objectives of 162 

minimising the number of hummocks sampled and minimising the quality of hummocks 163 

searched, with the total weight summing to one. We combined the two variables influencing 164 

P (n: number of hummocks searched; X: predictor of the quality of each hummock searched) 165 

into a single objective function of aggregate impact (A) to be minimised. This function differs 166 

slightly depending on the relationship between detection and the predictor of hummock 167 

(microhabitat) quality. When the relationship is positive, the aggregate impact A can be 168 

calculated as: 169 

min( ) min( ) (1 )
max( ) min( ) max( ) min( )n n

n n X XA w w
n n X X
− −

= × + × −
− −

     Eqn 3 170 

where n and X are each rescaled to range between 0 and 1 (by subtracting the minimum value 171 

observed during field surveys and dividing by the observed range), and wn indicates the 172 

weight on replication and 1- wn the weight on microhabitat quality. In the event of a negative 173 

relationship between detection and the microhabitat-related predictor, Eqn 3 can be 174 

reformulated as: 175 

min( ) max( ) (1 )
max( ) min( ) max( ) min( )n n

n n X XA w w
n n X X
− −

= × + × −
− −

      Eqn 4 176 

 177 

We used the Solver add-in in MS Excel to minimise the value of A by finding the optimal 178 

combination of n and X (assuming all n surveyed hummocks have quality X or better). To 179 

reflect the influence of n and X on the probability of detection, we replaced pi in Eqn 2 with 180 

the back-transformed logistic expression from Eqn 1 (using the mean estimated parameters), 181 

and set the resulting P as a constraint of the optimisation. We carried out the analysis for a 182 

target of P = 0.95 across all possible weights on hummock number and quality. We also set 183 

the minimum and maximum values for n and X observed in the field as constraints to the 184 
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optimisation, to prevent the optimal strategy from entailing unrealistic or impractical values 185 

of n and X. The spread sheet for the optimisation is provided in supporting information S3. 186 

 187 

Sensitivity analysis 188 

In the procedure described above, we chose to subset the data and only analyse detections 189 

from sites that were known to be occupied; however, some of the sites where H. millewae 190 

was not observed might in fact have been occupied. If so, the regression parameters in Eqn 1 191 

could be overestimates of the true relationship between hummock characteristics and the 192 

probability of detection. Therefore, we repeated all analyses using the full dataset, which 193 

represents the other end of the uncertainty spectrum (the possibility that all sites where the 194 

species was not detected were in fact occupied, and hence, the full data provides accurate 195 

estimates of the effects of hummock characteristics on the probability of detection). We 196 

repeated the model selection procedure and obtained estimates for Eqn 1 from the model with 197 

the highest DIC support. We then re-evaluated the optimal survey protocol (as per Eqn 3) 198 

using the hummock-detection relationship estimated from the entire dataset. 199 

 200 

Results 201 

Within the subset of sites that were known to be occupied by H. millewae, the model that 202 

included hummock volume as a predictor of the probability of detection (pi) received the 203 

most support (DIC = 88.4). The second-best model, including hummock stage, received 204 

effectively no support (∆DIC = 7.8). The probability of detection in a given hummock 205 

increased linearly with its volume (Figure 1a). As expected, results changed when we 206 

modelled hummock detection data from all sites. The model including hummock volume still 207 

showed the highest level of support based on DIC (the null model being second, with ΔDIC = 208 
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1.4). However, the estimated relationship between hummock volume and skink detection was 209 

less markedly positive (Figure 1b). 210 

 211 

 212 

Figure 1. Relationship between the volume of a hummock and the probability of detecting 213 

Hemiergis millewae in that hummock. Panel (a) depicts the relationship estimated from sites with 214 

known occupancy only; panel (b) depicts the relationship estimated from the full set of surveyed sites. 215 

Dashed lines represent 95% credible intervals. Inner tick marks display the volume of hummocks in 216 

which H. millewae was detected (top) or not detected (bottom). 217 

 218 

Figure 2a depicts the trade-off between the number and size of hummocks that must be 219 

sampled to achieve a threshold cumulative probability of detection (P) using the relationship 220 

between hummock volume and the probability of detection estimated from known occupied 221 

sites. In general, the minimum volume of hummocks searched needed to increase 222 

considerably when searching less than five hummocks (Figure 2a). When the probability of 223 

detection was estimated using the full dataset, the cumulative probability of detection 224 

depended almost exclusively on replication, as detection would increase appreciably only 225 

under unrealistic values of hummock volume (>10 m3). In turn, high targets for the 226 
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cumulative probability of detection could only be achieved with very large amounts of 227 

replication, even for the maximum value of hummock volume observed in the field (n = 17 228 

for P = 0.7, n = 22 for P = 0.8, n = 31 for P = 0.9 and n = 45 for P = 0.95; Figure 2b).  229 

 230 

 231 

Figure 2. Relationship between search strategies and the cumulative probability of detection of 232 

Hemiergis millewae at a site. The solid lines show the number of Triodia hummocks that must be 233 

searched at each site to achieve a given cumulative probability of detection (P) of H. millewae, 234 

dependent on the minimum volume of each hummock searched. Panel (a) depicts the relationship 235 

using the detection model derived from sites with known occupancy only; panel (b) depicts the 236 

relationship using the detection model derived from the full set of surveyed sites. Contour lines depict 237 

this relationship for four different values of P: 0.95, 0.9, 0.8 and 0.7 (top to bottom). The dashed 238 

horizontal line indicates the maximum hummock volume recorded in the model data. 239 

 240 

Figure 3a depicts the minimum combination of the number and volume of hummocks that 241 

must be searched at a site to reach a cumulative probability of detecting H. millewae of 0.95 242 

while minimising aggregate impact, dependent on the weight given to minimising the number 243 

of hummocks searched per site (wn), and assuming the relationship between hummock 244 
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volume and detection estimated from the subset of sites that were known to be occupied. 245 

Placing high weight on reducing the volume of hummocks searched (low wn) necessitated 246 

high sampling replication. For P = 0.95 and wn between 0 and 0.25, this was equivalent to the 247 

upper constraint we set in the optimisation problem (n = 20). Only two of the 52 sites 248 

surveyed during this study received an equivalent level of replication, suggesting that this 249 

level of replication may not be practical in many situations. The number of hummocks to be 250 

sampled fell exponentially as wn increased once a particular threshold of this weight was 251 

crossed (wn = 0.26). However, when high weight was placed on minimising replication (wn ≥ 252 

0.66) the optimal strategy required very large hummocks to be searched. For example, P = 253 

0.95 could be achieved by searching three very large hummocks (3.71 m3) at a site (Figure 254 

3b), but only six hummocks in the training data were this size or greater (7%). These results 255 

reflect the constraints we chose for the optimisation: in this sense, the optimisation not only 256 

identifies the minimum number and size of hummocks to search given differing weights on 257 

these two criteria, but can also indicate how practical those weightings are for real-world 258 

field surveys. 259 

 260 

For the case in which the probability of detection per hummock was estimated from the full 261 

dataset, no detection target above 0.7 could be achieved under the original constraint of n ≤ 262 

20 hummocks searched per site, as this would require unrealistic values of hummock volume 263 

(as above). Removing this constraint allows optimal strategies to be calculated, but they were 264 

likely to be impractical (Figure 3b). For example, a detection target of 0.95 could only be 265 

reached by sampling at least 40 hummocks of 1.59 m3 (Figure 3b); equating to 42 hummocks 266 

of above average size (the mean observed in the field was 1.12 m3).  267 

 268 

  269 
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 270 

Figure 3. Optimal search strategies for Hemiergis millewae. The plot depicts the minimum number 271 

of Triodia hummocks that must be searched at each site to reach a cumulative probability of detection 272 

of H. millewae of 0.95, dependent on the minimum volume of each hummock searched and the weight 273 

(importance) given to either minimising replication or the quality of hummocks searched. The x-axis 274 

displays the weight on minimising the number of hummocks sampled (wn). The weight on minimising 275 

the volume of each hummock searched is 1 minus wn. Hence, a value of 0.5 on the x-axis corresponds 276 

to placing equal weight on minimising the number of hummocks sampled and minimising their 277 

quality. The text to the right of each combination shows the minimum volume of the hummocks to be 278 

searched to achieve the threshold cumulative probability of detection of 0.95. Panel (a) indicates the 279 

optimal strategies based on the detection model derived from sites with known occupancy only; panel 280 

(b) describes the optimal strategies based on the detection model derived from the full set of surveyed 281 

sites. 282 

 283 

Discussion 284 

Our method provides a simple solution to the trade-off implicit in destructive sampling 285 

designs for occupancy surveys as exemplified by the case of H. millewae. Our results suggest 286 

that larger Triodia hummocks are preferentially used by H. millewae, and may be an 287 
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important microhabitat for this species. Yet, if this is true, dismantling large hummocks is 288 

also the most effective survey technique for this species. Hence, when designing occupancy 289 

surveys for H. millewae, surveyors face a dilemma: they need to reduce the probability of 290 

false absences to an acceptable level, but must also minimise the number and quality of 291 

hummocks sampled. Our optimisation approach can be used to identify survey strategies that 292 

solve this trade-off, dependent on the importance surveyors give to the number and quality of 293 

the microhabitats that will be affected at each site. 294 

 295 

When the relationship between hummock characteristics and the probability of detection was 296 

estimated from known occupied sites, the trade-off in our case study became especially 297 

important if high weight was placed on minimising the number of hummocks to be sampled 298 

per site (wn ≥ 0.66). Under this constraint, the number of hummocks to sample at each site 299 

was small (three), but the size of these hummocks needed to be large (≥ 3.71 m3) to attain a 300 

cumulative probability of detection of 0.95. As above, hummocks of this size were rare in the 301 

field data (7%). Hence, targeting hummocks of this size entails the removal of a locally 302 

scarce and potentially important resource for H. millewae. Since lower threshold values of P 303 

would require less searching effort, they would also entail less overall impacts; however, 304 

even moderate detection targets and weight on minimising the number of hummocks sampled 305 

could lead to impacts of some magnitude on the target species. For example, re-running our 306 

analysis with P = 0.8 and wn = 0.4 indicated that five hummocks of at least 1.5 m3 would 307 

need to be destroyed to attain the detection threshold. Less than one-third of hummocks in 308 

our training dataset were equal to or greater than this size, indicating that they are also a 309 

relatively uncommon and potentially important resource.  Selecting very large hummocks can 310 

also create further problems: here, we interpret spatial sub-units within a site (hummocks) as 311 

temporal replicates. Destructive sampling necessarily occurs without replacement, and could 312 
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generate bias due to the dependency between samples [28]. This bias may become more 313 

severe as the ‘population’ (the subset of hummocks with the desired characteristics) becomes 314 

smaller. 315 

 316 

Considerations such as these are fundamental to setting the weighting scheme in our 317 

approach. Ideally, the weight given to either minimising replication or minimising the quality 318 

of microhabitats sampled would reflect information on the impact of different sampling 319 

protocols on the target species. Where available, occupancy or population models could be 320 

used to establish the effect of microhabitat removal on population trends [see for example 321 

19,29], and weights derived based on the sensitivity of the species to microhabitat loss. One 322 

could even extend the approach presented here to explicitly take the modelled effect of 323 

microhabitat loss on population trends into account. For example, the decrease in occupancy 324 

or population size that would result from a given sampling strategy (i.e., combination of n 325 

and X) could be used as the basis for defining A (the aggregate impact) in the objective 326 

function (Eqn 3). The aim would remain to minimise A using Eqn 3 whilst maintaining the 327 

desired value of P, because both would be determined by the values of n and X (P through 328 

Eqn 1 and 2, and A through the occupancy or population model). As above, our data were 329 

insufficient to model site occupancy by H. millewae while accounting for imperfect detection. 330 

However, should subsequent studies enable the relationship between the probability of site 331 

occupancy and site hummock attributes to be estimated, the change in the probability of site 332 

occupancy that would result from a given survey strategy (based on the reduction in the 333 

density and volume of hummocks it would cause) could be considered directly in the 334 

objective function. 335 

 336 
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Nevertheless, obtaining quantitative estimates of the impacts of particular sampling regimes 337 

may not be possible in many situations. Our simple weighting scheme allows expert 338 

judgement on the sensitivity of the target species to destructive sampling to be incorporated 339 

into the sampling design. With an appropriate experimental design, adaptive management 340 

approaches [30] could be used to learn about the actual impacts of different sampling regimes 341 

and update the subjective weightings. Practical aspects of sampling will also influence the 342 

range of feasible survey strategies. In our case study, we set upper thresholds for the number 343 

and volume of hummocks to search based on the values observed in the field. Moreover, as 344 

we have shown here, one can reference the optimal combination of the number and quality of 345 

microhabitats to search for a given weighting scheme back to data on the density and quality 346 

of microhabitats that are available in the field, to assess the practicality of each weighting 347 

scheme. Our simple method therefore also allows the realities of sampling to be accounted 348 

for when identifying the optimal sampling regime. We view this as a particularly useful 349 

feature of the optimisation approach presented here. 350 

 351 

Uncertainty will also surround the estimates of the relationship between the features of 352 

microhabitats and detection of the target species. A common cause of uncertainty will be the 353 

scarcity of existing data. In our case study, this problem led to us being unable to fit a 354 

standard occupancy model to the data. We chose instead to model the effect of microhabitat 355 

characteristics on the probability of detection using data from sites with known occupancy; 356 

however, this might have led to overestimates of the true microhabitat-detection relationship. 357 

If so, the recommended optimal strategy may be insufficient to meet the target cumulative 358 

probability of detection. On the other hand, if some or all of the sites where the species was 359 

not detected were truly unoccupied, using all available data might produce underestimates of 360 

the microhabitat-detection relationship. In this case, the cumulative probability of detection 361 
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given by the recommended optimal strategy may exceed the target probability; and a strategy 362 

with a lower aggregate impact could have been chosen instead.  363 

 364 

The effects of uncertainty will be higher when heavy emphasis is placed on minimising 365 

replication or minimising impacts on high quality microhabitats, because, as revealed by our 366 

optimisations, extreme weightings lead to extreme sampling regimes (very high replication or 367 

very high quality of microhabitats to sample). Surveyors should ideally assess the 368 

ramifications of uncertainty in the microhabitat-detection relationship for the optimal 369 

sampling strategy. In a Bayesian context, investigators can do so by repeating the 370 

optimisation when sampling randomly from the posterior distribution of the parameters of the 371 

detection model. Our spreadsheet can be used to run simulations of this kind, by sampling at 372 

random from specified parameter distributions for the coefficients of the detection model 373 

instead of entering fixed values. One can then identify the optimal search strategy for each 374 

combination of parameter estimates, and obtain a distribution of optimal strategies which 375 

reflects parametric uncertainty. Several add-ins to MS Excel such as MCSimSolver 376 

(http://www3.wabash.edu/econometrics/EconometricsBook/Basic%20Tools/ExcelAddIns/M377 

CSimSolver.htm) can be used to run such simulations. 378 

 379 

In this study, we limited our scope to the impacts of hummock destruction on the target 380 

species. However, destructive sampling for H. millewae will impact, to some degree, 381 

numerous co-occurring species in Mallee environments that utilise Triodia hummocks 382 

[23,31,32,33]. Impacts on co-occurring species may be an important consideration for 383 

destructive sampling designs in general. These additional impacts can be accounted for using 384 

the approach we have presented here. As for the single-species case, the weighting scheme 385 

could be set using expert opinion on the impact of sampling on other species, or quantitative 386 

http://www3.wabash.edu/econometrics/EconometricsBook/Basic%20Tools/ExcelAddIns/MCSimSolver.htm
http://www3.wabash.edu/econometrics/EconometricsBook/Basic%20Tools/ExcelAddIns/MCSimSolver.htm
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estimates of the ecological impact of particular sampling designs could be incorporated 387 

directly into the objective function. 388 

 389 

Non-destructive sampling methods are always preferable, but destructive searches are 390 

necessary for some species. Yet studies that rely on such methods run the risk of undermining 391 

their very purpose, by negatively impacting the focal species or community [19]. When 392 

destructive methods are necessary, practitioners should carefully consider the trade-off 393 

between minimising replication and minimising the destruction of high quality microhabitats. 394 

The method we have presented provides a simple quantitative tool for assessing this trade-off. 395 

 396 

Acknowledgements 397 

We thank Karen Nalder and Karin Sluiter (Mallee Catchment Management Authority for 398 

administering the project, and Kym Schramm and Richard Prentice (Parks Victoria) for their 399 

assistance. Thanks are extended to Paul Coventry for assistance with fieldwork and to Sally 400 

Edwards for data entry. Cindy Hauser, Michael McCarthy and two anonymous referees 401 

provided very useful comments on an earlier draft. 402 

 403 

References 404 

1. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and 405 

prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40: 406 

677-697. 407 

2. Gu W, Swihart RK (2004) Absent or undetected? Effects of non-detection of species 408 

occurrence on wildlife–habitat models. Biological Conservation 116: 195-203. 409 



19 
 

3. Rondinini C, Wilson KA, Boitani L, Grantham H, Possingham HP (2006) Tradeoffs of 410 

different types of species occurrence data for use in systematic conservation planning. 411 

Ecology Letters 9: 1136-1145. 412 

4. Garrard GE, Bekessy SA, McCarthy MA, Wintle BA (2008) When have we looked hard 413 

enough? A novel method for setting minimum survey effort protocols for flora surveys. 414 

Austral Ecology 33: 986-998. 415 

5. Tyre AJ, Tenhumberg B, Field SA, Niejalke D, Parris KM, et al. (2003) Improving 416 

precision and reducing bias in biological surveys: estimating false-negative error rates. 417 

Ecological Applications 13: 1790-1801. 418 

6. McArdle BH (1990) When are rare species not there? Oikos 57: 276-277. 419 

7. Kéry M (2002) Inferring the absence of a species: a case study of snakes. Journal of 420 

Wildlife Management 66: 330-338. 421 

8. Wintle BA, Walshe TV, Parris KM, McCarthy MA (2012) Designing occupancy surveys 422 

and interpreting non‐detection when observations are imperfect. Diversity and Distributions 423 

18: 417-424. 424 

9. MacKenzie DI (2005) What are the issues with presence-absence data for wildlife 425 

managers? Journal of Wildlife Management 69: 849-860. 426 

10. Kéry M, Schmidt BR (2008) Imperfect detection and its consequences for monitoring for 427 

conservation. Community Ecology 9: 207-216. 428 

11. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, et al. (2002) Estimating 429 

site occupancy rates when detection probabilities are less than one. Ecology 83: 2248-2255. 430 



20 
 

12. Wintle BA, McCarthy MA, Parris KM, Burgman MA (2004) Precision and bias of 431 

methods for estimating point survey detection probabilities. Ecological Applications 14: 703-432 

712. 433 

13. Field SA, Tyre AJ, Possingham HP (2005) Optimizing allocation of monitoring effort 434 

under economic and observational constraints. Journal of Wildlife Management 69: 473-482. 435 

14. Bailey LL, Hines JE, Nichols JD, MacKenzie DI (2007) Sampling design trade-offs in 436 

occupancy studies with imperfect detection: examples and software. Ecological Applications 437 

17: 281-290. 438 

15. MacKenzie DI, Royle JA (2005) Designing occupancy studies: general advice and 439 

allocating survey effort. Journal of Applied Ecology 42: 1105-1114. 440 

16. Mackenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, et al. (2006) Occupancy 441 

estimation and modeling: inferring patterns and dynamics of species occurrence. Burlington, 442 

MA: Elsevier Academic Press. 443 

17. McDonald PJ, Pavey CR, Fyfe G (2012) The lizard fauna of litter mats in the stony desert 444 

of the southern Northern Territory. Australian Journal of Zoology 60: 166-172. 445 

18. Heyer WR, Donnelly MA, McDiarmid RW, Hayek L-AC, Foster MS (1994) Measuring 446 

and monitoring biological diversity: standard methods for amphibians. Washington, D.C.: 447 

Smithsonian Institution Press. 448 

19. Otto CR, Bailey LL, Roloff GJ (2013) Improving species occupancy estimation when 449 

sampling violates the closure assumption. Ecography 36: 1299-1309. 450 



21 
 

20. Basset Y, Springate N, Aberlenc H, Delvare G (1996) A review of methods for sampling 451 

arthropods in tree canopies. In: Stork NE, Adis J, Didham RK, editors. Canopy arthropods. 452 

London: Chapman & Hall. pp. 27-52. 453 

21. Kubečka J, Godø OR, Hickley P, Prchalová M, Říha M, et al. (2012) Fish sampling with 454 

active methods. Fisheries Research 123: 1-3. 455 

22. Cogger H (2000) Reptiles and Amphibians of Australia. Reed New Holland, Sydney. 456 

New South Wales, Australia. 457 

23. Nimmo DG, Spence-Bailey LM, Kenny S (2008) Range extension of the Millewa Skink 458 

Hemiergis millewae in the Murray-Sunset National Park, Victoria. The Victorian Naturalist 459 

125: 110-113. 460 

24. Robertson P, Coventry P, Sluiter IRK (2011) Survey for the threatened Millewa Skink 461 

(Hemiergis millewae) in Murray-Sunset National Park, April 2011. Melbourne: Unpublished 462 

report to the Mallee Catchment Management Authority. 463 

25. Parris KM, Norton TW, Cunningham RB (1999) A comparison of techniques for 464 

sampling amphibians in the forests of south-east Queensland, Australia. Herpetologica: 271-465 

283. 466 

26. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of 467 

model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B 468 

(Statistical Methodology) 64: 583-639. 469 

27. Plummer M (2005) JAGS: just another Gibbs sampler. Proceedings of the 3rd 470 

International Workshop on Distributed Statistical Computing (DSC 2003), Vienna, Austria. 471 



22 
 

28. Kendall WL, White GC (2009) A cautionary note on substituting spatial subunits for 472 

repeated temporal sampling in studies of site occupancy. Journal of Applied Ecology 46: 473 

1182-1188. 474 

29. Goode MJ, Horrace WC, Sredl MJ, Howland JM (2005) Habitat destruction by collectors 475 

associated with decreased abundance of rock-dwelling lizards. Biological Conservation 125: 476 

47-54. 477 

30. McCarthy MA, Possingham HP (2007) Active adaptive management for conservation. 478 

Conservation Biology 21: 956-963. 479 

31. Brown S, Clarke MF, Clarke R (2009) Fire is a key element in the landscape-scale habitat 480 

requirements and global population status of a threatened bird: The Mallee Emu-wren 481 

(Stipiturus mallee). Biological Conservation 142: 432-445. 482 

32. Kelly LT, Nimmo DG, Spence-Bailey LM, Haslem A, Watson SJ, et al. (2011) Influence 483 

of fire history on small mammal distributions: insights from a 100‐year post‐fire 484 

chronosequence. Diversity and Distributions 17: 462-473. 485 

33. Nimmo DG, Kelly LT, Spence-Bailey LM, Watson SJ, Haslem A, et al. (2012) Predicting 486 

the century‐long post‐fire responses of reptiles. Global Ecology and Biogeography 21: 1062-487 

1073. 488 

 489 

  490 



23 
 

Supporting Information 491 

 492 

S1 Code. JAGS code for the detection model for Hemiergis millewae. 493 

S2 Dataset. Data for the detection model. 494 

S3 Spreadsheet. Spreadsheet for optimisation of search strategies. 495 


	Abstract
	Introduction
	Methods
	Case study and field surveys
	Results
	Discussion
	References

